The Striatum Is Highly Susceptible to Mitochondrial Oxidative Phosphorylation Dysfunctions
نویسندگان
چکیده
منابع مشابه
The striatum is highly susceptible to mitochondrial oxidative phosphorylation dysfunctions.
Neuronal oxidative phosphorylation (OXPHOS) deficiency has been associated with a variety of neurodegenerative diseases, including Parkinson's disease and Huntington's disease. However, it is not clear how mitochondrial dysfunction alone can lead to a preferential elimination of certain neuronal populations in vivo. We compared different types of neuronal populations undergoing the same OXPHOS ...
متن کاملMadurella mycetomatis Is Highly Susceptible to Ravuconazole
The current treatment of eumycetoma utilizing ketoconazole is unsatisfactory because of high recurrence rates, which often leads to complications and unnecessary amputations, and its comparatively high cost in endemic areas. Hence, an effective and affordable drug is required to improve therapeutic outcome. E1224 is a potent orally available, broad-spectrum triazole currently being developed fo...
متن کاملOxidative Phosphorylation and Mitochondrial Function
tive phosphorylation for ATP homeostasis. The ability to generate ATP depends on O2 and an intact inner mitochondrial membrane. During oxygen deprivation from ischemia (a low blood flow), an inability to generate energy from the electron transport chain results in an increased permeability of this membrane and mitochondrial swelling. Mitochondrial swelling is a key element in the pathogenesis o...
متن کاملMitochondrial Oxidative Phosphorylation Is Impaired in Patients with Congenital Lipodystrophy
OBJECTIVE Lipid accumulation in skeletal muscle and the liver is strongly implicated in the development of insulin resistance and type 2 diabetes, but the mechanisms underpinning fat accrual in these sites remain incompletely understood. Accumulating evidence of muscle mitochondrial dysfunction in insulin-resistant states has fuelled the notion that primary defects in mitochondrial fat oxidatio...
متن کاملA Salmonella enterica serovar typhimurium hemA mutant is highly susceptible to oxidative DNA damage.
The first committed step in the biosynthesis of heme, an important cofactor of two catalases and a number of cytochromes, is catalyzed by the hemA gene product. Salmonella enterica serovar Typhimurium hemA26::Tn10d (hemA26) was identified in a genetic screen of insertion mutants that were sensitive to hydrogen peroxide. Here we show that the hemA26 mutant respires at half the rate of wild-type ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Neuroscience
سال: 2011
ISSN: 0270-6474,1529-2401
DOI: 10.1523/jneurosci.6223-10.2011